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Community water fluoridation has been named one of the 10 greatest public health
achievements of the 20th century for its role in improving dental health. I leverage
county level variation in the timing of fluoride adoption, combined with restricted U.S.
Census data that link over 29 million individuals to their county of birth, to estimate
the causal effects of childhood fluoride exposure. Children exposed to community water
fluoridation from age zero to five are worse off as adults on indices of economic self-
sufficiency (-1.9% of a SD) and physical ability and health (-1.2% of a SD). They are
also significantly less likely to graduate high school or serve in the military and more
likely to be incarcerated as adults. These findings overturn existing conclusions about
safe levels of fluoride exposure and its impact on adult labor market outcomes.
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1 Introduction

Over 70% of publicly supplied drinking water in the United States is fluoridated and

the CDC has named community water fluoridation as one of the 10 greatest public health

achievements of the 20th century (Gooch, 2020). Despite strong evidence that exposure to

low levels of fluoride are an effective way to strengthen teeth, many individuals, communities,

and industrialized countries oppose water fluoridation out of concern for potential negative

health risks. While existing research has not shown conclusive evidence of negative health

effects from low levels of fluoride exposure, concerns about the safety of fluoride are supported

by a body of research that concludes that early childhood exposure to high doses of fluoride

can cause a wide variety of health problems including weakened bones and joints as well as

cognitive impairment.1 The lowest safe level of fluoride exposure is unclear. In this paper,

I investigate the impact of early childhood exposure to community water fluoridation on

long-run health and labor market outcomes.

The impact of fluoride on health varies based on both the amount and timing of fluoride

exposure. This is true for both the positive impacts on dental health as well as the potential

negative side effects on teeth, bones, and cognitive function. While it is well established

that fluoride exposure makes teeth more resistant to decay, recent controversy has focused

on the role of fluoride as a neurotoxin. The meta-study Choi, Zhang and Grandjean (2012)

concludes that early exposure to high fluoride levels results in decreased cognitive functions

equivalent to nearly one half of a standard deviation in IQ scores. While the majority

of reviewed studies focus on subjects with fluoride levels well above recommended levels,

some find negative cognitive effects at relative low levels as well. In a follow up meta-study

incorporating more recent evidence, Grandjean (2019) concluded that the levels currently

recommended for water fluoridation likely exceed safe exposure levels.

While effects on cognitive function might result in negative long-run impacts, recent

1See DHHS (2015), Choi, Zhang and Grandjean (2012), and Grandjean (2019) for reviews of this litera-
ture.
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work has suggested that improvements in dental health play a more prominent role. Glied

and Neidell (2010) provides the best evidence in the U.S. context, leveraging variation in the

timing of community water fluoridation programs to estimate long run wage effects in the

National Longitudinal Survey of Youth – 1979 (NLSY79). Due to the narrow group of birth

cohorts in their sample (1957-1964), they are unable to make within-county comparisons;

instead, their results rely on the assumption that unobservable county characteristics that

affect labor market outcomes are uncorrelated with fluoridation status. They find positive

but insignificant wage effects in the full sample—driven by a statistically significant 4%

increase in wages among women.2,3 A more recent paper leverages natural variation in

fluoride levels between water treatment plants in Sweden and finds positive effects of fluoride

on labor force participation and income (Aggeborn and Öhman, 2017). The authors also

estimate effects on cognitive ability and health, finding no effect on either. Their findings

rest on the assumption that variation in the geological characteristics, and associated fluoride

levels, of local water sources are exogenous to cognitive ability and labor market outcomes.

While the Swedish data provide significant precision and measurement advantages over the

NSLY79, fluoride exposure is relatively low; over 90% of Swedish observations were exposed

to fluoride levels less than those typically added in the United States (0.8-1.2 mg/L). The

impact of fluoridating water to these higher levels is unclear.

In this paper, I provide the first large sample and quasi-experimental evidence of the

long run health and labor market effects of adding fluoride to the water at these levels. This

data includes both respondents to the long form 2000 decennial census as well as American

Community Survey respondents from 2001 to 2016 and allows for vast increases in precision,

requires much weaker identifying assumptions via inclusion of birth county of fixed effects,

and include a broad set of outcomes, birth cohorts, and communities relative to previous

2Of course, the small sample sizes afforded by the NLSY (roughly 12,000 individuals) result in relatively
wide confidence intervals. They cannot reject effects on earnings as small as -0.6% or as large as 5% in the
full sample. Similarly, they cannot reject effects as small as 0.6% or as large as 8% for women.

3I also conduct a replication exercise and find that the model of Glied and Neidell (2010) estimates
negative wage effects from fluoride in my sample. These results are discussed in Section 5.3.
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work.4 I use a stacked difference-in-differences strategy that compares outcomes of county-

birth-cohorts with exposure to fluoridated water to those without any, while controlling for

county and year of birth. This stacked design is unbiased even in the presence of heterogenous

treatment effects (Cengiz et al., 2019).5

I find that consumption of fluoridated water from age zero to five results in a 1.9 percent

of a standard deviation decrease in adult economic self-sufficiency, 1.2 percent of a standard

deviation decrease in physical ability and health, a 0.4 percentage point increase in likelihood

of being incarcerated, a 1.0 percentage point decrease in military service and a 1.5 percentage

point decrease in high school graduation.6 To put some of these results in context, I compare

them to Bailey et al. (2020) who estimated the beneficial effects of early childhood access

to food stamps using a similar set of outcomes. Taking point estimates from both studies

at face value, this suggests that early childhood fluoride exposure has the potential to erase

approximately two-thirds of the self-sufficiency benefits and four-fifths of the decreases in

incarceration caused by early childhood utilization of food stamps.

The net effect of fluoride is negative; even at levels previously thought to be safe, the

tooth strengthening effect of fluoride provides less benefit than fluoride’s corresponding nega-

tive impact on other determinants of health and economic self-sufficiency. While it is difficult

to disentangle all the mechanisms at play, the observed decrease in high school graduation

rates is consistent with negative cognitive effects.7 While Aggeborn and Öhman (2017) find

that fluoride improves labor market outcomes with no evidence of negative cognitive effects,

the lower average fluoride exposure in their sample may reduce negative health effects enough

4As is shown in Appendix C of Anders, Barr and Smith (2019), this type of large sample administrative
data reduces the likelihood that statistically significant results are false positives, improves precision, and
reduces publication bias.

5This details of this project including the research question, data, outcomes, and empirical approach
were pre-specified in Roberts (2021).

6These are the estimated effects of treatment on the treated, found by taking the intent to treat effects
from Tables 2 and 3 and dividing by 0.37, the population weighted average fraction of a county with initial
access to fluoridated water.

7Any negative health effect has the potential to impact high school graduation through increased absences
or reduced ability to focus. Decreases in cognitive function are still the most likely culprit given evidence
of fluoride’s effect on IQ scores reviewed in Grandjean (2019) and the direct impact that IQ has academic
performance.
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to result in a net positive labor market impact driven by improvements in dental health.

A gradual re-evaluation of water fluoridation policies is already underway. In 2015

the U.S. Public Health Service slightly reduced recommended fluoride levels to 0.7mg/L and

acknowledged the need for more research into the risks of low-level fluoride exposure (DHHS,

2015). In 2019, the American Dental Association issued a statement that reaffirmed their

support of water fluoridation while also welcoming additional research into the potential

negative cognitive effects (ADA, 2019). Despite the acknowledged need for more research,

fluoride is still being added to a majority of public water supplies in the U.S. and regulations

for regions with naturally high levels of fluoride allow water to carry up to 4.0 mg/L, nearly

six times the recommended water fluoridation level. The results of this study demonstrate

the need to accelerate our re-evaluation of water fluoridation policies. The observed negative

impacts of fluoride combined with widespread access to the enamel strengthening benefits of

fluoride through toothpaste and dental treatments provides a strong argument for ending the

practice of water fluoridation and lowering the maximum levels of fluoride allowed by safe

drinking water standards. If water fluoridation practices continue, more research is needed

to determine the optimal level of fluoride such that the marginal benefits to dental health

are not overwhelmed by negative health costs.

2 History of Fluoride

In the 1930’s two dentists, Dr. Frederick McKay and Dr. G.V. Black, discovered

that exposure to fluoride in drinking water caused a visible discoloration of teeth while

simultaneously protecting teeth against decay. Additional study revealed that impacts on

dental health occur during the early stages of tooth development, which begins in utero and

is entirely complete by age eight. This childhood exposure directly affects the tooth structure

making it more resistant to decay. Cases of tooth decay decrease as water fluoride levels

increase but the marginal benefits shrink above 0.7 mg/L and plateau by 1.2 mg/L (Heller,

Eklund and Burt, 1997). The most common negative side effect of fluoride is mild dental

fluorosis, a cosmetic defect that is characterized by lacy white markings on teeth but does
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not negatively impact dental health (DHHS, 2015). Dental fluorosis increases in frequency

and severity with exposure level. Severe fluorosis is not only cosmetic but includes pitting

and damage to tooth structure in addition to visible discoloration. Risk of severe fluorosis

increases significantly at fluoride levels above 2.0 mg/L.8

Targeting the potential benefits of low-level fluoride exposure, Grand Rapids Michigan

became the first city to artificially add fluoride to their public water supply in 1945. Over

time other communities followed their example and water fluoridation became a common,

although far from universal, practice across the United States. Despite its low financial

cost (as low as $0.11 yearly per capita in large cities) and its prevalence, water fluoridation

decisions have been rife with controversy since the beginning of the practice (?). Referendums

regarding water fluoridation typically face strong opposition and frequently fail, with much

of the increase in water fluoridation over time being driven by administrative decisions rather

than public votes (Sapolsky, 1968). Although specific complaints have changed over time, the

opposition to water fluoridation has been based on legitimate concerns as well as conspiracy

theories. For example, the concern that human error could lead to toxic levels of fluoride

being added to public water supplies was validated by a tragic 1992 accident where nearly

300 Alaskans were poisoned, and one died, after excessively high levels of fluoride were added

to a community well. On the other hand, the no-longer-popular conspiracy theory that water

fluoridation was part of an elaborate communist plot to poison or control America was shared

broadly among anti-fluoridation campaigns in the 1950’s (Johnston, 2004).

Although controversy over community water fluoridation has persisted until today, re-

search into the effects of fluoride has also progressed. While early research found that fluoride

exposure was most beneficial for children, additional studies have shown moderate benefits

for adults as well (DHHS, 2015).9 Researchers have also explored the effects of fluoride be-

8Cases of mild fluorosis affect about 23% of people in the U.S. while severe effect less than 1% (Beltrán-
Aguilar, Barker and Dye, 2010)

9Adult fluoride exposure reduces the production of tooth-damaging acid by mouth bacteria and simulta-
neously fortifies teeth making them more resistant to acid. Some evidence suggests that the benefits of adult
exposure are concentrated among individuals who were also exposed to water fluoridation during childhood
(Singh, Spencer and Armfield, 2003).
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yond its impacts on dental health. Fluoride exposure at levels above 4.0 mg/L can cause

skeletal fluorosis, resulting in increased joint pain and weakened bones and joints with higher

risk of fracture (DHHS, 2015). While additional research has explored potential negative im-

pacts of fluoride on thyroid health or the roll of fluoride as a carcinogen, the majority of

research has found no effect of fluoride on those margins (DHHS, 2015).

Increasingly, the focus of research into the health effects of fluoride has been concentrated

on the potential for fluoride to act a neurotoxin and negatively impact cognitive functions.

Early work using high doses of fluoride in rats showed that fluoride both passes through

the blood brain barrier and results in behavioral changes, but whether or not these effects

would translate to humans exposed to low doses over a long period of time remained unclear

(Mullenix et al., 1995).

The metastudy Choi, Zhang and Grandjean (2012) used evidence from a collection

of studies in China and Iran and concluded that high levels of fluoride exposure results in

decreases of IQ by nearly half of a standard deviation. While many of the studies included in

that review had methodological issues and small sample sizes, additional research by Bashash

et al. (2017) in Mexico and Green et al. (2019) in Canada found that in-utero exposure

to fluoridated drinking water corresponded to meaningful decreases in IQ scores of young

children, especially for boys.10 These studies accounted for individual level fluoride exposure

by measuring fluoride levels in urine of expectant mothers. In fact, a fairly large body of

recent literature, many of which are reviewed in the follow-up meta study Grandjean (2019),

has, with only a few exceptions, consistently found that fluoride has negative cognitive effects.

Economists have also recently begun studying the labor market effects of fluoride, which

are potentially affected by improved dental health or by any negative health effects—cognitive

effects in particular. This research was led by Glied and Neidell (2010) who provide the best

existing evidence in the U.S. context by leveraging variation in the timing of community

water fluoridation programs to estimate the impact of childhood fluoride exposure on adult

10A 1.0 mg/L increase in urine fluoride levels corresponded to a decrease of 5.0 and 3.7 IQ points in the
two studies respectively.
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wages. Unfortunately, the narrow group of birth cohorts in the National Longitudinal Sur-

vey of Youth – 1979 (NLSY79), which includes individuals born from 1957-1964, does not

provide sufficient variation for within county comparisons or a difference-in-differences anal-

ysis. Their results instead rely on the assumption that unobservable county characteristics

affecting labor market outcomes are uncorrelated with fluoridation status. Perhaps due to

the small sample size and limited identifying variation available among the NLSY79 cohorts,

they find positive but insignificant effects in the full sample. The positive effects are driven

by a statistically significant 4% increase in wages among women, which the authors interpret

as evidence of appearance-based discrimination. The income point estimate for males is zero.

In contrast, Aggeborn and Öhman (2017) leverage natural variation in fluoride levels in

Sweden and finds positive effects on labor force participation and income, with larger effects

for men. Interestingly, Aggeborn and Öhman (2017) are also able to test for any impacts

on cognitive ability or health and find no effect on either outcome. While the Swedish

data provide significant precision and measurement advantages over the NSLY79, fluoride

exposure is low; over 90% of Swedish observations were exposed to fluoride levels less than

those typically added in the United States (0.8-1.2 mg/L).

Water fluoridation remains an important public health topic due it its role as a low-

cost way to improve dental health as well as its potential health risks. Despite improving

trends in dental health in the U.S. which are frequently accredited to water fluoridation

programs,11 tooth decay is still one of the most common chronic childhood diseases and one

in four children below the poverty line have untreated tooth decay (Newacheck et al., 2000;

Dye, Li and Thornton-Evans, 2012).

3 Data

The primary data source is restricted individual-level U.S. Census and American Com-

munity Survey (ACS) data linked to the Numident file (U.S. birth and death records), made

11The prevalence of any tooth decay in adult teeth among adolescents decreased from 90% in the 1960’s
to 60% by 2004 and the CDC named community water fluoridation as one of the 10 greatest public health
achievements of the 20th century (DHHS, 2015).
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available through the Census Research Data Centers. This includes ACS years 2001-2016.

The Numident file contains each individual’s date and location of birth as well as date of

death for those who are deceased. Water fluoridation data comes from the 1992 Fluoride

Census (a public record provided by the CDC).12,13,14 Using data from the 1992 Fluoride

Census, Figure 12 shows the rollout of community water fluoridation programs by county

over time. My analysis sample is limited to individuals born in a U.S. county that was

included in the 1992 fluoridation census and successfully linked to its county FIPS code.

For computational ease, I collapse the data to the birth-year by birth-county by survey-year

level separated by both gender and race. Each collapsed cell is weighted by the number of

observations in that cell for all specifications.

Summary statistics are shown in Table 1 for the full sample, by gender, and by treatment

status. These summary statistics include basic demographic variables, components of each

outcome index (which are explained in detail in the next section), as well as secondary

outcomes. While there are minor differences between treated and untreated counties these

differences do not affect the internal validity of the stacked difference-in-differences design

(explained in Section 4). Sample size is presented as the number of unique individuals, the

number of collapsed cells, and the number of observations included in the final sample—which

is a function of the stacked differences-in-differences procedure described in Section 4 which

includes many duplicated observations.

Defining Fluoride Exposure: Despite access to administrative records, these data sources

are still unable to directly identify the amount of fluoride that individuals consumed during

childhood. I define treatment at the county-birth-cohort level as the fraction of childhood

12Matthew Neidell and Sherry Glied have also generously shared the cleaned version of the 1992 Fluoride
Census used in Glied and Neidell (2010).

13Via a Freedom of Information Act request to the CDC, I have obtained current natural fluoride levels
for each community water system. While these are not used in the current analysis, they do show that
counties with lower levels of natural fluoride in their water supply were more likely to add fluoride and,
among counties that added fluoride, counties with low natural fluoride levels tended to add fluoride in earlier
years.

14The locations from both the Numident file and fluoridation records are recorded as strings at the city
or county level. These locations are matched to their county level FIPS codes.
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years with any potential exposure to community water fluoridation. Childhood here is de-

fined to include the year of an individual’s birth through the year that each cohort reaches

age five.15,16 By this definition, a fully treated county-birth-cohort would have lived in a

county with a fluoridated water supply from birth. Because counties may have multiple

public water systems with different water fluoridation policies and because some households

source drinking water from private wells not all individuals in a treated county will drink

fluoridated water. I am unable to identify individual children’s water fluoridation exposure

within a treated county. As a result, this primary treatment definition fails to account for

variation in the fraction of each county drinking fluoridated water and the resulting estimates

can be interpreted as intent to treat (ITT) effects.17 Event studies exploring the potential

for non-linear treatment affects by age at first exposure are described in Sections 4 and 5.

Outcome Variables: The purpose of this research is to identify the net labor market and

health effects of community water fluoridation. Using a construction similar to Bailey et al.

(2020), I examine two indices that best capture these outcomes in the ACS: (i) economic self-

sufficiency, and (ii) physical ability and health. These indices average across standardized

component variables, reversing signs when necessary, such that a more positive value implies

a better outcome. The Economic Self-Sufficiency Index includes variables indicating whether

or not an individual was in the labor force, worked last year, weeks worked last year, usual

hours worked per week, labor income, other income not from public sources, income-to-

poverty ratio, not in poverty, reverse coded income from welfare, and reverse coded income

15This treatment definition is consistent with other early childhood interventions where years of exposure
is the most relevant parameter. Specifically, both Hoynes et al. (2016) and Barr and Smith (2021) use the
fraction of early childhood with access to food stamps in order to estimate long run effects in a difference-
in-differences setting.

16This definition intentionally does not account for differences in fluoridation levels (parts per million).
Fluoride levels were determined at the local level, but CDC guidelines adjusted recommended rates relative
to average local temperatures which may affect rates of water evaporation and consumption. Because of this,
variation in fluoride level between 0.8-1.2 should not reflect actual increases in individual fluoride intake but
simply a difference in the amount of water fluoride necessary to reach an equivalent per-person level of
fluoride exposure.

17Section 5 discusses the implied treatment on the treated (TOT) effects and presents results from an
alternative treatment definition that directly incorporates the percent of a county exposed to water fluori-
dation.
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from supplemental security.18 The Physical Ability and Health Index includes reverse coded

information on the presence of an ambulatory or independent living difficulty, a cognitive

difficulty, a vision or hearing difficulty, and a self-care difficulty.19

The index approach alleviates concerns about multiple hypothesis testing and improves

statistical power (Kling, Liebman and Katz, 2007). In addition to these two primary out-

comes, I also estimate effects on the secondary outcomes of high school graduation, military

service, survival to 2020, and incarceration. The next section outlines the details of my

analytical approach.

4 Analytical Approach

I use a stacked difference-in-differences strategy leveraging the staggered adoption of

community water fluoridation across the United States. This design compares outcomes of

county-birth-cohorts with exposure to fluoridated water to those without any, while control-

ling for county and year of birth. This strategy does not rely on the exogeneity of fluoride

levels conditional on observables, but on the weaker assumption that the shift in health and

labor market outcomes of untreated individuals across time effectively proxies for the shift

in outcomes that would have occurred for individuals drinking fluoridated water in the ab-

sence of fluoride treatment. While I am using a stacked differences-in-differences design, the

basic non-stacked version is a useful starting point to discuss merits of this approach. That

non-stacked reduced form difference-in-differences specification would be:

Yct = θc + δs(c)t + µXct + β(Exp6)ct + εct (1)

In this specification, (Exp6)ct represents a county-birth cohort’s cumulative exposure

to fluoridated water during childhood (age 0-5). The long run health and labor market

18Dollar values are inflation adjusted to 2016 dollars prior to index creation.
19While the variables “ambulatory difficulty” and “selfcare difficulty” are separate in all ACS surveys,

they were asked in a single question for the 2000 decennial long form. For consistency, they were combined
into a single “any ambulatory or selfcare difficulty” variable. The variables “any hearing difficulty” and “any
vision difficulty” were also available separately after 2007 but were combined into a single “any hearing or
vision difficulty” variable for consistency.
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outcomes are represented by Yct; while θc and δs(c)t respectively represent birth county and

state-by-birth-cohort fixed effects; and Xct contains a vector of covariates including sex, age,

race, and survey year. Although not necessary for identification, the controls for sex, age,

race, and survey year are included to increase precision.

Recent literature has shown that, in settings with staggered adoption, the two-way fixed

effects approach in Equation 1 requires the strong assumption of homogeneous treatment

effects to remain unbiased (Goodman-Bacon, 2018; Sun and Abraham, 2020; Chaisemartin

and d’Haultfoeuille, 2020). Specifically, in the näıve application of Equation 1, the coefficient

β in represents the weighted average of all 2x2 comparisons between counties in my sample.

This includes comparisons where previously treated counties are used as controls for later

treated counties, despite the fact that these “control” counties are still being affected by

dynamic treatment effects themselves. If there are any heterogeneous treatment effects

between counties that are treated at different points in time, those differences in the average

treatment effect or the dynamic path of treatment effects over time are not accounted for

and instead introduces bias into the estimated effects.

In the setting of water fluoridation, heterogeneous treatment effects are likely for a va-

riety of reasons. The prevalence of other sources of fluoride from dental treatments, food,

and toothpaste have changed over the many years of birth cohorts included in this sample.

Changing access to dental care over time or generational differences in the importance of den-

tal health could also drive heterogeneous treatment effects. Additional heterogeneity comes

from the fact that fluoride is adopted at the public water system level and many counties

have multiple public water systems as well as individuals who consume drinking water from

private wells. This means that the fraction of a county’s population receiving fluoridated

water after initial adoption varies significantly across counties which strongly suggests het-

erogenous county treatment effects as a result. Given the high potential for heterogeneous

treatment effects, it is necessary to adjust Equation 1 to ensure that treated counties are

only compared to “clean” controls—counties without any treatment effects within the event
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window. I do this by implementing a stacked design that is robust to heterogeneous treat-

ment effects (Cengiz et al., 2019). For any given year of initial treatment, only counties that

are untreated through the end of the treatment window are valid controls, while previously

or soon-to-be treated counties must be excluded from the control group.20 This means that

the control group changes over time, shrinking as each treated county is removed from the

pool of potential controls for counties treated in later years. Because the same county must

be included as a control unit, treated unit, or excluded from the comparison depending on

the year of initial treatment, I create a separate dataset every year that any county first

began water fluoridation. Within each dataset, occasionally referred to as “stacks” in the

remainder of the paper, I generate time variables relative to year of initial treatment for

treated groups within that stack as well as a variable indicating the year of initial treatment

for that stack. Then, each of these treatment datasets are appended or “stacked” together.

In the last three rows, Table 1 displays both the original number of collapsed county-birth-

cohort observations as well as the total number of observations after the duplication and

stacking procedure.

The stacked design prevents early fluoride adopters from acting as controls for counties

that adopted fluoride later. The resulting estimates represent the unbiased average treat-

ment effect even in the presence of heterogeneous treatment affects. The updated regression

equation is:

Yctg = θcg + δs(c)tg + µXct + β(Exp6)ctg + εctg (2)

The key difference between this and the näıve two-way fixed effect approach in Equation

1 is the saturation of county and state-by-birth cohort fixed effects with g, indicating the

dataset or stack that each observation originated from. Standard errors are clustered at

20I exclude from the control group any counties that are not-yet-treated but will be treated within the next
eleven years. Given the definition of early childhood exposure from age 0-5, birth cohorts that experience
any water fluoridation in their first five years of life are not clean controls but partially treated groups.
Additionally, for both event studies and my primary estimates, the treatment window extends from birth
cohorts born 15 years before through 6 years after the first year of fluoridation. As a result, any county that
adopts water fluoridation within eleven years of the treated counties first water fluoridation would include
partially treated birth cohorts within the event window and must be excluded from the control group.
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the county level which both accounts for serial correlation over time as well as the repeated

inclusion of the same county as a part of multiple stacks. To explore how fluoride exposure

affects children of different ages, I will estimate an additional specification where (Exp6), the

cumulative exposure measure, is replaced with a set of timing variables indicating the first

year of water fluoridation relative to a person’s birth. This dynamic difference-in-difference

specification is as follows:

Yctg = θcg + δs(c)tg + µXct +
15∑

a=−6 [a6=5]

βa ∗ 1[Flc − b = a] + εctg (3)

In this specification, Flc and b represent the first year that an individual’s birth county

fluoridated their water and that individual’s birth year. The timing variable a represents

each individual’s age in the first year of water fluoridation and covers the period from 6 years

before birth through age 15 with age 5 as the omitted year. The dynamic treatment effects

are captured in βa and represent the effect of receiving fluoridated public water beginning

at age a. All other terms are equivalent to those in Equation 1.

These event studies will show the net effects of first fluoride exposure at a particular

age, which will include both the known benefits of fluoride exposure during tooth formation,

as well as any negative cognitive or health effects that occur during the treatment window.21

5 Results

5.1 Primary Outcome Indices

I find that early childhood exposure to fluoride negatively impacts both health and labor

market outcomes. I estimate the average intent-to-treat effect as a 0.45 percent of a standard

deviation reduction in physical ability and health as well as a 0.69 percent of a standard

deviation reduction in self-sufficiency; the effects are significant at the 1% and 10% level

respectively. These results, as well as their robustness to alternative sets of control variables,

21It is worth noting that only county of birth is observed, not counties of residence throughout childhood.
The likelihood of an individual residing in their birth county decreases over time, so estimates will be
attenuated toward zero when estimating the effect of exposure in later years.
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are shown in Table 2. Additional robustness checks are also described in Section 5.4 and

shown in Table 4. These results are estimated using the county-birth-cohort specifications

described in Section 4, and do not account for heterogeneity in the fraction of each county

that is exposed to fluoride. Because counties may have multiple public water systems with

different water fluoridation policies, and because some households source drinking water

from private wells, not all individuals in a treated county will drink fluoridated water. This

means that the estimates shown in Table 2 represent the intent-to-treat (ITT) effect, or the

average treatment effect in county-birth-cohorts where anyone is exposed to fluoride. These

estimates include individuals who were not exposed to water fluoridation and, as a result,

understate the true effect of individual fluoride consumption. In order to approximate the

average effect of treatment on treated (TOT) individuals, I divide the intent-to-treat effects

by 0.37, the population weighted average percent of a county initially drinking fluoridated

water.

These TOT estimates imply that drinking fluoridated water during early childhood

causes a 1.9 percent of a standard deviation decrease in adult economic self-sufficiency and

a 1.2 percent of a standard deviation decrease in physical ability and health. To put the

magnitude of these results in context, I compare them to Bailey et al. (2020) who estimated

the beneficial effects of early childhood access to food stamps using two nearly identical

indices constructed from a similar dataset. While Bailey et al. (2020) found no statistically

significant effects on physical ability and health, they found meaningful benefits for adults’

economic self-sufficiency. Taking point estimates at face value, my findings suggests that

early childhood fluoride exposure has the potential to erase approximately two-thirds of the

self-sufficiency gains from early childhood utilization of food stamps.

One alternative method to account for county level differences in the percent of treated

individuals within a county is to directly incorporate this variation into the definition of

treatment. In this case, Equations 2 and 3 from Section 4 are adjusted so that the treatment

variables (Exp6ctg and 1[Fl − b = a] respectively) are divided by the fraction of the county
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receiving fluoridated public water during the initial treatment period. Essentially, this in-

flates each county’s estimates by the fraction of that county that was treated, rather than

inflating the average intent to treat estimate by the average treatment percentage across all

counties. Table 5 presents these alternative results for both primary outcomes and shows

the robustness of these results to various sets of control variables. This method increases the

precision of the estimated effects, with effects on both primary indices significant at the 1%

level. The estimated 2.0 percent of a standard deviation impact on self-sufficiency is nearly

identical to the previously estimated 1.9 percent. The estimated effect on physical ability

and health however is only 0.7 percent of a standard deviation, smaller than the 1.2 percent

estimated previously.22

I also estimate dynamic effects relative to a birth-cohort’s age at the time of initial water

fluoridation in their county. These event studies are shown in Figures 3 and 4. These figures

show level effect sizes across birth cohorts with exposed from birth, which is consistent with

differences in cohorts exposed at later ages being driven by water fluoridation rather than

some other factor. The slope of the estimated trend line among cohorts treated from birth

is included in these figures; slopes closer to zero provide the strongest evidence in support

of my identifying assumption. The observed shrinking of marginal effects at older ages is

also consistent with existing theory and evidence, as described in Section 2, that fluoride is

likely to have the strongest effect on young children. These figures are discussed further in

Section 5.4.

These results show that fluoride has a net negative impact on health and labor market

outcomes even at relatively low levels of exposure. Even at levels previously thought to be

safe, the known tooth strengthening effect of fluoride are overwhelmed by negative impacts

on other determinants of health and self-sufficiency.

22Unfortunately, this method may introduce bias if counties with different treatment intensities were on
different outcome trajectories prior to treatment. For example, this may be the case if urban counties, where
private well use is less common, have a higher percentage of individuals drinking fluoridated water and also
income and employment trends that are improving faster than those in rural areas. Despite the increased
precision of using this method, the result in Table 2 remain my preferred specification as outlined in the
pre-analysis plan (Roberts, 2021).
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5.2 Secondary Outcomes

I also explore the effect of childhood fluoride exposure on high school graduation, in-

carceration, military service, and mortality. These results are shown in Table 3. I find

statistically significant decreases in high school graduation and military service as well as

increases in rates of adult incarceration. These effects translate to TOT effects of a 1.5

percentage point decrease in high school graduation, a 0.4 percentage point increase in like-

lihood of being incarcerated, and 1.0 percentage point decrease in military service. To once

again frame effect sizes relative to Bailey et al. (2020), these point estimates, taken at face

value, suggests that early childhood fluoride exposure has the potential to erase four-fifths of

the decrease in incarceration caused by early childhood utilization of food stamps.23,24 Point

estimates also suggests increases in mortality, measured by a decrease in the likelihood of

survival to 2020, but this effect is only statistically significant for men.25

I also estimate dynamic effects on each secondary outcome relative to a birth-cohort’s

age at the time of initial water fluoridation in their county and these results are shown in

Figures 5-8. As discussed previously, near zero slopes on the left-hand side of the figures

show consistently sized effects across birth cohorts with equal exposure to fluoride; consistent

effects for cohorts with equal treatment exposure supports the assumption that differences in

that outcome by exposure age are being driven by water fluoridation rather than some other

factor. The impact on high school graduation is shown in Figure 5 and clearly shows that

birth cohorts with the most fluoride exposure have the lowest rates of high school graduation.

Additionally, the effects are concentration during early childhood (age 0-5) showing that

exposure during those years has the largest impact on educational attainment. These results

are consistent with the hypothesis that early fluoride exposure negatively impacts cognitive

development.

23Similar comparisons of high school graduation and military service are not possible because equivalent
outcomes are not included in Bailey et al. (2020)’s study of food stamps.

24In similar work, Barr and Smith (2021) find that each additional year of food stamps access reduces
the likelihood of a criminal conviction in young adulthood by 2.5%.

25The TOT effect on men is a 0.3 percentage point decrease in the likelihood of surviving to 2020.

17



The interpretation of impacts on military service, as shown in Figure 7, are less clear.

While level effects for fully exposed individuals supports the identifying assumption, the

effects on military service are concentrated on later years, from age 5-9. Because these are

estimates of the net effect of fluoride including potential health risk as well as improvements

in dental health, it is difficult to distinguish what mechanism drives this pattern of effects.26

While estimated increases in incarceration rates are meaningfully large, the event study

in Figure 6 shows that this trend exists even among cohorts that were exposed from birth

despite the fact that these cohorts have equal levels of fluoride exposure. This suggests that,

of the outcomes included in this study, my identifying assumption is least likely to hold

in the case of incarceration effects; effects on incarceration should be interpreted with an

additional degree of caution.

5.3 Replating Glied and Neidell (2010)

In prior work leveraging the county level adoption of water fluoridation policies, Glied

and Neidell (2010) found that water fluoridation increased wages for women. These results

were estimated using birth cohorts from 1957-1964 included in the National Longitudinal

Survey of Youth (NLSY79).27 I replicate their analysis using my sample. Specifically, I

redefine treatment to match their definition (average fraction of county exposed to water

fluoridation during an individuals first five years of life), and add controls for 1960 county

characteristics, state fixed effects, and fluoride exposure as an adult.28,29 These results, for

26Anecdotally, military service is known for providing high quality medical and dental care, such that
marginal individuals may explore the option of military service while seeking dental treatment. If this is the
case, then improvements in dental health may reduce military service. On the other hand, negative cognitive
affects have an ambiguous impact on military service. While some individuals who opt out of additional
education may turn to military service as an alternative, others who may have served in the military in the
absence of fluoride exposure might be excluded if they are unable to pass military entrance requirements.
Determining the interactions of these mechanisms at each age is beyond the scope of this study.

27Differences between their model and my own are described in more detail in Section 2.
28This is not an exact replication of their approach, as the NLSY includes numerous individual level

variable that are not available in the ACS or decennial surveys. I also do not control for other county level
variables included in their analysis, such as health care and investment measures, as these controls had very
little impact on their estimates.

29This analysis is conducted on a clean version of the ACS and decennial surveys without any of the
transformation used to collapse the data to the county-birth-cohort level or “stacking” used in my preferred
specification.
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the full sample as well as by gender, are shown in Table 7. Contrary to the results found

using the NLSY, I estimate negative effects on wages for both genders. While these effects

are only statistically different from zero at the 10% level, they are sufficient to reject, at

the 5% level, the positive effects estimated by Glied and Neidell (2010) for both the full

population and female only samples.30

To explore how sample size affects the estimated results, I also repeatedly draw 1000

random samples equal to the sample sizes used by Glied and Neidell (2010).31 I estimate

treatment effects separately within each random draw following their estimation model.

Figures 9, 10, and 11 show histograms of these results, for the full sample as well as by

gender. Each histogram also includes a line indicating the effect size estimated by Glied

and Neidell (2010) in their equivalent sample. While their model predicts negative effects of

fluoride on wages in the Census sample, these figures show that a non-trivial portion of small

sample estimates are positive. This suggests that positive effects found by Glied and Neidell

(2010) may be the result of their relatively small NSLY sample being a similar outlier.32,33,34

5.4 Testing Identifying Assumption

The key identifying assumption is that, conditional on birth cohort and county fixed ef-

fects, the non-fluoride factors that influence an individuals’ long run health and labor market

outcomes are orthogonal to the presence or level of community water fluoridation in their

county of birth at a particular age. This means that, conditional on birth cohort and county

fixed effects, any difference in outcomes among those exposed to fluoridated water is the

30Glied and Neidell (2010) estimate small negative effects on men, which is not statistically different from
my estimates.

31While their sample consists of roughly 12,000 individuals, they observe these individuals multiple time
resulting in observation counts of 37,098 in the male only sample, 35,297 in the female sample, and 72,395
in the combined sample. I separately draw 1000 random samples equal to the respective observation counts
from each of three groups.

32This is consistent with evidence found by Ioannidis, Stanley and Doucouliagos (2017) on the use of
underpowered samples.

33It is also possible that these differences are simply a result of failing to exactly match the model used
by Glied and Neidell (2010), specifically that my estimation does not contain the breadth of individual level
controls included in their study.

34This difference is not the result of different sample periods. An alternative version of this replication
procedure restricted the sample to the same birth cohorts used by Glied and Neidell (2010) (1957-1964) and
found statistically significant negative effects of an even larger magnitude.
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result of the fluoride itself and not any other factor. In this setting, the main assumption

is that the shift in health and labor market outcomes of untreated individuals across time

effectively proxies for the shift in outcomes that would have occurred for individuals drink-

ing fluoridated water in the absence of fluoride treatment. It is impossible to observe the

counterfactual outcomes of individuals exposed to water fluoridation, but I conduct several

tests to explore how likely this assumption is to hold.

Water fluoridation is endogenously determined at the local level. One potential threat

to my identifying assumption is if communities that implemented water fluoridation had

outcomes that were already trending away from untreated communities at the time of fluoride

adoption; this would violate parallel trends. To explore the relationship between county

characteristics and the timing of decisions to adopt water fluoridation, I estimate the impact

of various 1960 county characteristics on the binary decision to ever adopt fluoride as well

as the timing of that fluoride adoption. These results are shown in Table 8. I find that the

decision to add fluoride is positively correlated with population, urbanicity, homeownership

and education but negatively correlated with the percent of a county that voted (in the prior

election) and the percent living in rural areas.

Column 2 of Table 4 present the result where the sample is restricted to exclude counties

that never adopt water fluoridation. This has little impact on estimated effects, suggesting

that my results are not driven by differential trends between treated and never treated

counties. Additionally, among counties that adopted water fluoridation, urban counties

adopted fluoride earlier while counties with a high percentage of the population under the

age of five tended to adopt fluoride later. It is worth noting that these differences in the levels

of observable characteristics are not a threat to the internal validity of my results unless they

also correspond to differential trends between treatment and control counties in my outcome

variables. Column 3 of Table 4 shows the results of including these predictors interacted

with linear time trends as controls while estimating the effect of fluoride exposure on my
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primary outcomes.35 While point estimates remain negative for both outcomes, effects on

physical ability and health are diminished and lose statistical significance.36

I explore the evidence of the parallel trends assumption by generating even studies for

each outcome. As shown in Equation 3, I estimate dynamic effects relative to a birth-cohort’s

age at the time of initial water fluoridation in their county. If treatment and control groups

have differential trends unrelated to fluoride treatment, then we would expect individuals

born after the beginning of water fluoridation to continue to trend apart despite the fact

that water fluoridation is not changing for these groups.37 On the other hand, consistently

sized effects for these birth cohorts would provide suggestive evidence that the identifying

assumption holds for that outcome. The slope of the estimated trend line among fully treated

cohorts is displayed in Figures 3-8 as evidence for each respective primary and secondary

outcome; slopes closer to zero provide the strongest evidence in support of my identifying

assumption. Additionally, because treatment is likely to have the strongest effect on young

children, a leveling off of treatment effects at older ages, due to smaller marginal impacts

of fluoride exposure during later development periods, is consistent with differences being

driven by water fluoridation rather than some other factor.

My identifying assumption also might also fail if there are meaningful shifts in the com-

position of people being born into treated and untreated counties across the sample period.

This would occur if demographic shifts between counties happened simultaneous to water flu-

oridation or if individuals migrate between counties in response to water fluoridation. Agge-

born and Öhman (2017) suggest that migration in response to water fluoridation is unlikely

because fluoride in water is colorless, odorless, and tasteless, meaning that changes in water

fluoridation are not salient to the affected populations. Additionally, decisions regarding

35Only 1960 county characteristics that have a statistically significant relationship (at the 10% level) with
the timing of water fluoridation are included in this linear trends specification.

36Given the cumulative nature of the impact of fluoride over time, it is possible that these linear trends
are overfitting and absorbing some of the true impact of fluoride as well.

37While presence of water fluoridation is not changing, there may be changes in the fraction of a county
that is treated during this time period, but these changes are relatively small on average and unlikely to
drive any differential trends.
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water fluoridation are frequently made with little or no input from local residents, making it

even more unlikely that water fluoridation levels are salient enough to drive migration across

counties.38 It is however still possible that migration patterns happened to coincide with

water fluoridation. This test is particularly relevant, given that the great migrations of more

than 6 million blacks from the rural south into urban cities continued through the 1950’s

and 60’s, overlapping with a large portion of the fluoride variation included in this study.

I test for demographic shifts that correspond to race by estimating the effect of water

fluoridation on race, gender, age at time of survey, and likelihood of living in birth county as

an adult, as shown in Table 6. This test shows the timing of water fluoridation did coincide

with changing racial demographics, specifically a 1.0 percentage point decline in the fraction

of the population that was white. This means that counties that adopted fluoride also

tended to outpace control counties in the rate at which racial diversity increased. While any

causality between county migration and water fluoridation remains unlikely, it does appear

that the timing of the great migration into urban areas coincided with the early adoption of

water fluoridation in those counties as is shown in Table 8.

These differential trends in racial demographics are a threat to my identifying assump-

tion if control counties are not a reliable counterfactual for treatment counties. I explore the

impact of migration and its effect on my estimates in several ways. First, I estimate effects

restricted to only white individuals. If my overall effects are driven by migration of non-white

individuals around the time of water fluoridation, then restricting the sample to only include

white individuals eliminates that source of variation and should result in shrinking effect

sizes. In practice, comparing Column 1 in Table 4 to my primary results in Table 2 shows

that effect sizes are nearly identical even when race is restricted to only white individuals.39

While effects are much smaller in this sample than in Column 1 of Table 2 (estimates with

38While some referendums were held allowing individuals to vote on community water fluoridation, roughly
two-thirds of early water fluoridation decisions were made by government administrators without citizen input
(Crain, Katz and Rosenthal, 1969).

39Migration may still affect the outcomes of individuals in this sample indirectly through changing peer
groups and county characteristics, but I expect these effects to be relatively small compared to potential
direct effect of a changing sample.
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no controls), they are quite similar to estimated effects in the full sample when race fixed

effects are included, suggesting that these fixed effects are already controlling for any key

differences between current county residents and migrating racial groups.

While the balance tests only show statistically significant changes in the racial makeup

of counties at the time treatment, it is possible that there are changes to other unobservable

characteristics that coincide with the timing of water fluoridation. In order to account

for general patterns of migration I also estimate effects on my primary outcomes while

restricting the sample to only include individuals with strong geographic roots, measured by

an individual living in their birth county at the time of their adult survey.40,41 Additionally,

I create a county level measure of both in- and out-migration where in-migration is defined as

the fraction of individuals surveyed in a county who were not born there and out-migration

is defined as the fraction of individuals born in that county who are not surveyed there

as adults. I create several samples, restricting to counties with progressively lower levels

of both in- and out- migration rates. These estimates are shown in Table 4 columns 5-

7 and represent counties with both in- and out-migration levels below the 90th, 75th, and

50th percentiles respectively. The magnitude and statistical significance of estimates remains

consistent across these migration cuts. These results suggest that while significant migration

did occur during my sample period, and even coincided with the timing of water fluoridation

for some groups, migration is unlikely to be a primary driver of the estimated effects of water

fluoridation.

6 Conclusion

Tooth decay is one of the most common chronic childhood diseases in the United States

and one in four children below the poverty line have untreated tooth decay (Newacheck

40It is still possible that birth cohorts were changing over time as a response to the migration of their
parent’s generation. But, to the extent that first generation residents of a county are less likely to remain in
county through adulthood, this measure still captures a sample that is ex-ante less likely to be affected by
migration effects.

41This sample also serves the dual purpose of focusing on individuals who likely lived in their birth county
throughout childhood, removing noise in the treatment variable caused by moving during childhood.
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et al., 2000; Dye, Li and Thornton-Evans, 2012). Water fluoridation has been promoted

since 1945 as a simple, cost effective, and egalitarian approach to improving dental health.

Today, over 70% of publicly supplied drinking water in the United States is fluoridated.

But, despite strong evidence that exposure to low levels of fluoride are an effective way to

strengthen teeth, recent evidence has suggested that fluoride may negatively affect cognitive

ability even at these low levels (Choi, Zhang and Grandjean, 2012; Grandjean, 2019). On

the other hand, recent studies within economics have also found that childhood exposure to

water fluoridation improves adult labor market outcomes (Glied and Neidell, 2010; Aggeborn

and Öhman, 2017).

In this paper, I use U.S. Census data linked to childhood fluoride exposure to provide

large sample quasi-experimental evidence of the long run health and labor market effects of

community water fluoridation programs. This data includes both respondents to the long

form 2000 decennial census as well as American Community Survey respondents from 2001

to 2016. I generate a physical ability and health index as well as a self-sufficiency index and

estimate the effect of childhood exposure to water fluoridation on these outcomes as well

as the secondary outcomes of high school graduation, military service, incarceration, and

mortality.

I find that children exposed to community water fluoridation from age zero to five expe-

rience a 1.9 percent of a standard deviation decrease in their adult economic self-sufficiency,

1.2 percent of a standard deviation decrease in adult physical ability and health, as well as

a 1.5 percentage point decrease in high school graduation, a 1.0 percentage point decrease

in military service, and a 0.4 percentage point increase in likelihood of being incarcerated.

These results show, even at levels previously thought to be safe, the net effect of fluoride is

negative.

These findings have important implications for water fluoridation policy. Fluoride is still

being added to a majority of public water supplies in the U.S. and regulations for regions

with naturally high levels of fluoride allow water to carry up to 4 mg/L, four times the level
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of water fluoridation evaluated in this study. The results of this study demonstrate the need

for a re-evaluation of water fluoridation policies. The observed negative impacts of fluoride

combined with widespread access to the enamel strengthening benefits of fluoride through

toothpaste and dental treatments provides a strong argument for ending the practice of water

fluoridation and lowering the maximum levels of fluoride allowed by safe drinking water

standards. If water fluoridation practices continue, more research is needed to determine the

optimal level of fluoride such that the marginal benefits to dental health are not overwhelmed

by impacts on health, cognitive ability, and labor market success. Further study is needed

to determine the exact biological mechanisms that are driving these negative effects and

discover solutions that mitigate them.
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7 Tables

Table 1: Summary Statistics

(1) (2) (3) (4) (5)
Full Sample Men Women Treated Counties Never Treated

Demographics
White 0.876 0.886 0.866 0.871 0.882
Male 0.480 1 0 0.478 0.482
Age 51.82 51.69 51.93 54.88 48.38
Resides In Birth County 0.164 0.167 0.162 0.167 0.162

Physical Ability and Health Index
No Ambulatory Difficulty 0.921 0.927 0.915 0.909 0.933
No Cognitive Difficulty 0.953 0.952 0.953 0.949 0.956
No Independent Living Difficulty 0.944 0.948 0.939 0.937 0.951
No Hearing Or Vision Difficulty 0.971 0.967 0.975 0.968 0.975

Self-sufficiency Index
In Laborforce 0.698 0.759 0.641 0.658 0.742
Worked Last Year 0.736 0.792 0.684 0.699 0.778
Average Weekly Work Hours 29.11 33.38 25.18 27.56 30.85
Weeks Worked Last Year 10.84 11.93 9.830 9.570 12.27
Labor Income 39460 53410 26600 38140 40950
Other Income 3359 4232 2553 3860 2796
Percent Of Poverty Level 351 360 342 354 347
Not In Poverty 0.920 0.932 0.909 0.922 0.918
Welfare Income 46 34 57 40 53
Social Security Income 230 224 236 249 209

Other Outcomes
Incarcerated 0.008 0.015 0.001 0.006 0.01
Veteran 0.158 0.300 0.027 0.178 0.135
Graduated High School 0.860 0.848 0.870 0.854 0.867
Currently Married 0.686 0.718 0.656 0.688 0.684
Survived To 2020 0.944 0.934 0.953 0.931 0.958

Sample (Cells) 32,660,000 15,890,000 16,770,000 15,370,000 17,290,000
Unique Piks 29,150,000 13,860,000 15,300,000 24,850,000 4,296,000
Collapsed Cells 3,493,000 1,668,000 1,825,000 2,087,000 1,406,000

Note: This table shows summary statistics for the primary sample in column (1) with additional summary statistics
by gender in columns (2-3) and by county treatment status in columns (4-5). Summary statistics for the component
parts of the primary two outcome indices are listed separately. The number of observations included in each regression
(after collapsing and duplicating data as described in the analysis section) is included as ”Sample (Cells)”.
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Table 2: Main Outcomes - By Gender

(1) (2) (3) (4) (5)
Full Sample
Physical Ability and Health Index -0.0064*** -0.0046*** -0.0046*** -0.0045*** -0.0045***

(0.0015) (0.0014) (0.0014) (0.0014) (0.0014)
Self-sufficiency Index -0.0099** -0.0054 -0.0057 -0.0054 -0.0069*

(0.0044) (0.0038) (0.0037) (0.0037) (0.0037)
Observations 32,660,000 32,660,000 32,660,000 32,660,000 32,660,000

Women Only
Physical Ability and Health Index -0.0063*** -0.0043*** -0.0043*** -0.0042** -0.0042***

(0.0017) (0.0016) (0.0016) (0.0016) (0.0016)
Self-sufficiency Index -0.0066 -0.0032 -0.0032 -0.0029 -0.0041

(0.0045) (0.0041) (0.0041) (0.0041) (0.0041)
Observations 16,770,000 16,770,000 16,770,000 16,770,000 16,770,000

Men Only
Physical Ability and Health Index -0.0066*** -0.0049*** -0.0049*** -0.0047*** -0.0048***

(0.0018) (0.0017) (0.0017) (0.0017) (0.0017)
Self-sufficiency Index -0.0138*** -0.0083** -0.0083** -0.0080** -0.0099**

(0.0048) (0.0040) (0.0040) (0.0040) (0.0040)
Observations 15,890,000 15,890,000 15,890,000 15,890,000 15,890,000

Race FE N Y Y Y Y
Gender FE N N Y Y Y
Survey Year FE N N N Y Y
Age FE N N N N Y

Note: This table displays the primary index outcomes as additional controls are added - ending with
the preferred specification in column (5). Results are also shown separately by gender. Observations
refers to the number of observations used in each regression, after the after the collapsing and du-
plication procedures outlined described in the analysis section. Significance levels indicated by: *
(p<0.10) **(p<0.05), ***(p<0.01).
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Table 3: Secondary Outcomes

(1) (2) (3) (4)
HS Diploma Incarcerated Alive in 2020 Veteran

Full Sample -0.0054*** 0.0015*** -0.0006 -0.0038***
(0.0014) (0.0003) (0.0004) (0.0011)

Observations 18,890,000 22,970,000 32,660,000 32,660,000

Women Only -0.0048*** 0.0003*** -0.0001 -0.0002
(0.0014) (0.0001) (0.0004) (0.0003)

Observations 9,708,000 11,800,000 16,770,000 16,770,000

Men Only -0.0061*** 0.0027*** -0.0011** -0.0079***
(0.0016) (0.0005) (0.0005) (0.0021)

Observations 9,183,000 11,170,000 15,890,000 15,890,000

Note: This table displays a set of secondary outcomes with each column
representing a different outcome and subsequent rows presenting results
separately by gender. Observations refers to the number of observations
used in each regression, after the after the collapsing and duplication pro-
cedures outlined described in the analysis section. Significance levels in-
dicated by: * (p<0.10) **(p<0.05), ***(p<0.01).

Table 4: Robustness Checks

(1) (2) (3) (4) (5) (6) (7)

White
Ever Treated

Counties
Linear Time

Trends
Reside in

Birth County
Lowest 90%
Migration

Lowest 75%
Migration

Lowest 50%
Migration

Physical Ability
& Health Index -0.0046*** -0.0049*** -0.0016 -0.0054** -0.0042*** -0.0050*** -0.0052***

(0.0014) (0.0017) (0.0015) (0.0022) (0.0015) (0.0016) (0.0019)

Self-Sufficiency
Index -0.0046 -0.0047 -0.0063* -0.0106** -0.0095* -0.0101** -0.0076**

(0.0034) (0.0037) (0.0038) (0.0052) (0.0038) (0.0042) (0.0043)
Observations 24,360,000 15,370,000 32,040,000 17,390,000 27,730,000 19,800,000 9,487,000

Note: This table shows results from various robustness checks with each column representing a separate specification
and the two rows showing the effect on the two primary outcomes. Column (1) restricts the sample to white individu-
als. Column (2) restricts the sample to only include counties that were eventually treated within the treatment window.
Column (3) shows the results from including demographics controls for each county interacted with linear time trends.
Column (4) restricts the sample to only include individuals who resided in their birth county at the time of their survey.
Columns (5-7) restrict the sample to exclude counties with high levels of migration. County level migration is defined
in two different ways. First, as the fraction of individuals born in a county who were surveyed elsewhere as an adult
and secondly as the fraction of adults living in a county who were not born there. Counties with migration rates above
the 50th, 75th and 90th percentile in either measure were excluded from the respective samples. Observations refers to
the number of observations used in each regression, after the after the collapsing and duplication procedures outlined
described in the analysis section. Significance levels indicated by: * (p<0.10) **(p<0.05), ***(p<0.01).
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Table 5: Main Outcomes - Adjusted by Percent of County Treated

(1) (2) (3) (4) (5)
Full Sample
Physical Ability and Health Index -0.0117*** -0.0069*** -0.0069*** -0.0067*** -0.0069***

(0.0026) (0.0024) (0.0024) (0.0025) (0.0024)

Self-sufficiency Index -0.0292*** -0.0173** -0.0175** -0.0171** -0.0200***
(0.0085) (0.0072) (0.0071) (0.0072) (0.0072)

Observations 32,660,000 32,660,000 32,660,000 32,660,000 32,660,000

Race FE N Y Y Y Y
Gender FE N N Y Y Y
Survey Year FE N N N Y Y
Age FE N N N N Y

Note: This table displays primary outcomes when the treatment variable has been adjusted to incor-
porate the fraction of county exposed to fluoride. Observations refers to the number of observations
used in each regression, after the after the collapsing and duplication procedures outlined described
in the analysis section. Significance levels indicated by: * (p<0.10) **(p<0.05), ***(p<0.01).

Table 6: Balance Tests

(1) (2) (3) (4)
Age Male Resides in Birth County White

Balance Tests 0.0077 0.0003 0.0002 -0.0101***
(0.0070) (0.0007) (0.0014) (0.0026)

Observations 32,660,000 32,660,000 32,660,000 32,660,000

Note: This table displays the results of balance tests where my preferred stacked
difference-in-differences design was used to estimate any changes in observable
demographic characteristics that simultaneously with treatment. Observations
refers to the number of observations used in each regression, after the after the
collapsing and duplication procedures outlined described in the analysis section.
Significance levels indicated by: * (p<0.10) **(p<0.05), ***(p<0.01).

Table 7: Replication of Glied and Neidell (2010)

(1) (2) (3)
Full Sample Female Male

Replication Results
Log Wage -0.0105* -0.0076 -0.0125

(0.0064) (0.0068) (0.0078)
Observations 19,320,000 10,140,000 9,179,000

Note: This table displays the results of replicating Glied and
Neidell (2010) by estimating the effect of childhood exposure
to water fluoridation on log hourly wages. The details of this
replication are outlined in Section 7. Significance levels indi-
cated by: * (p<0.10) **(p<0.05), ***(p<0.01).
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Table 8: Water Fluoridation and 1960 County Characteristics

(1) (2)
Ever Treated Year of First Treatment

1960 County Characteristics
Population (in 10,000’s) 0.0016∗∗∗ -0.0018

(0.0001) (0.8676)
Population Per Mile (in 1,000’s) -0.0018 0.1630

(0.6822) (0.1446)
10 Year Population Change (in 1,000’s) 0.0284 -20.6297

(0.9010) (0.0917)
Percent in Urban Area 0.0012∗∗ -0.0949∗∗∗

(0.0028) (0.0000)
Percent in Rural Area -0.0038∗∗∗ -0.0200

(0.0000) (0.4673)
Percent Non-White 0.0014 0.0319

(0.0974) (0.2175)
Percent Under Age 5 -0.0177 0.8593∗∗

(0.0635) (0.0052)
Percent Over Age 65 0.0095 0.3142

(0.1590) (0.1721)
Median Age -0.0078 0.1359

(0.1398) (0.4175)
Median Income (in $1,000’s) -0.0103 -0.8151

(0.5323) (0.1676)
Median Years Education -0.0321∗ 1.3249∗

(0.0143) (0.0257)
Percent with Less Than 5 Years Education -0.0078∗∗ -0.0140

(0.0011) (0.8537)
Percent with High School Diploma -0.0000 -0.1868∗

(0.5198) (0.0185)
Death Rate -8.9473 58.4335

(0.1005) (0.7600)
Marraige Rate -1.1346 32.6536

(0.1790) (0.2263)
Employment Rate -0.3762 -3.5741

(0.1735) (0.6838)
Percent Homeowners 0.6118∗∗∗ -0.4737

(0.0000) (0.8851)
Percent Voted -0.7391∗∗∗ 13.4338∗

(0.0000) (0.0234)
Democratic Voteshare 0.0018∗ -0.0248

(0.0119) (0.2541)
Household Size -0.0559 2.7432∗

(0.1089) (0.0105)
Observations 2988 2070

Note: This table shows the relationship between county characteristics and the en-
dogenous decision to adopt water fluoridation. Column (1) shows the relationship be-
tween these county characteristics and a binary variable indicating if a county ever
adopted water fluoridation (by 1992). Column (2) shows the relationship between
county characteristics and the first year of fluoride adoption. Negative values indi-
cate that those types of counties first adopted fluoride in earlier years. All regressions
include state fixed effects. Significance levels indicated by: * (p<0.10) **(p<0.05),
***(p<0.01).
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8 Figures

Figure 1

Note: This figure shows the estimated treatment effect on each (nor-
malized) outcome included in the Disability and Health Index.
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Figure 2

Note: This figure shows the estimated treatment effect on each (nor-
malized) outcome included in the Self-sufficiency Index.
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Figure 3

Note: This figure shows the dynamic effects of fluoride exposure on
Disability and Health by cohort age at the time of county fluoride
adoption. Cohorts left of zero were born after fluoride adoption and
were potentially exposed to fluoride for their entire childhood. Cohorts
to the right of zero received less childhood exposure depending on their
age when fluoride was first adopted.
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Figure 4

Note: This figure shows the dynamic effects of fluoride exposure on
Self-sufficiency by cohort age at the time of county fluoride adoption.
Cohorts left of zero were born after fluoride adoption and were poten-
tially exposed to fluoride for their entire childhood. Cohorts to the
right of zero received less childhood exposure depending on their age
when fluoride was first adopted.
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Figure 5

Note:This figure shows the dynamic effects of fluoride exposure on
High School completion by cohort age at the time of county fluoride
adoption. Cohorts left of zero were born after fluoride adoption and
were potentially exposed to fluoride for their entire childhood. Cohorts
to the right of zero received less childhood exposure depending on their
age when fluoride was first adopted.
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Figure 6

Note: This figure shows the dynamic effects of fluoride exposure on
Incarceration by cohort age at the time of county fluoride adoption.
Cohorts left of zero were born after fluoride adoption and were poten-
tially exposed to fluoride for their entire childhood. Cohorts to the
right of zero received less childhood exposure depending on their age
when fluoride was first adopted.
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Figure 7

Note: This figure shows the dynamic effects of fluoride exposure on
military service by cohort age at the time of county fluoride adoption.
Cohorts left of zero were born after fluoride adoption and were poten-
tially exposed to fluoride for their entire childhood. Cohorts to the
right of zero received less childhood exposure depending on their age
when fluoride was first adopted.
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Figure 8

Note: This figure shows the dynamic effects of fluoride exposure on
longevity by cohort age at the time of county fluoride adoption. Co-
horts left of zero were born after fluoride adoption and were potentially
exposed to fluoride for their entire childhood. Cohorts to the right of
zero received less childhood exposure depending on their age when
fluoride was first adopted.
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Figure 9

Note: This figure shows the distribution of estimates generated repli-
cating Glied and Neidell (2010) with random 1000 random samples.
The details of this replication procedure are described in Section ??.
The dashed line indicates the coefficient estimated by Glied and Nei-
dell (2010).
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Figure 10

Note: This figure shows the distribution of estimates generated repli-
cating Glied and Neidell (2010) with random 1000 random male only
samples. The details of this replication procedure are described in Sec-
tion ??. The dashed line indicates the coefficient estimated by Glied
and Neidell (2010) in their male only sample.
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Figure 11

Note: This figure shows the distribution of estimates generated repli-
cating Glied and Neidell (2010) with random 1000 random female only
samples. The details of this replication procedure are described in Sec-
tion ??. The dashed line indicates the coefficient estimated by Glied
and Neidell (2010) in their female only sample.
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Figure 12

Note: This figure shows the timing of county level adoption of water
fluoridation. Counties with missing water fluoridation data and never
treated counties are included in the ”no data” group.
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